BOnSAI: a Smart Building Ontology for Ambient Intelligence

Thanos G. Stavropoulos
Dimitris Vrakas
Danai Vlachava
Nick Bassiliades
Outline

Abstract
1. Background
2. Target
3. Related Work
4. BOnSAI
5. BOnSAI Usage
6. Future Work
Abstract

• BOnSAI: a Smart Building Ontology for Ambient Intelligence
• Includes concepts for
 ▫ Functionality (Hardware, Services), Environment, QoS, Users, Context
 ▫ Imports from existing ontologies
• Put in use
 ▫ Smart Building at the International Hellenic University – Smart IHU
 ▫ Semantic Service description for Sensor Network Devices
1 Background

- Ambient Intelligence (AmI)
 - Derives from Ubiquitous, Pervasive Computing
 - Users surrounded by embedded/wearable/portable computing devices
- Web Services (Sensor Web)
 - WSDL standard for syntactic interoperability
 - Widely used in AmI
- Semantic Web Services
 - Various standards
 - OWL-S, WSMO (top-down)
 - SAWSDL, WSMOLite (bottom-up)
 - Confusion, Complexity, lack of universal solutions
2 Goal of BOnSAI

- To provide a simple yet powerful solution for the convergence of AmI, WS, SW
- Compatible with top-down descriptions (upper ontologies)
 - Interoperability with existing approaches
 - Also to use as a knowledge base of services
- Can be used for bottom-up descriptions (e.g. SAWSDL)
 - Lightweight semantic descriptions
 - Even more universal
2 Goal

BOnSAI: Ontology for Semantic Web Services in Ambient Intelligence
3 Related Work

Context Ontology [1]

- OWL-S extension
 - Quite application specific

3 Related Work

CoDAMoS [2]

✓ imported in BOnSAI

2. Preuveneers et al. Automated context-driven composition of pervasive services to alleviate non-functional concerns
3 Related Work

OntoAMI [3]

✓ Quite minimal

• But not general enough:
 ▫ Device provides Service
 ▫ Action on Object
 • BOnSAI is less restrictive
 ▫ Event reifies Context
 • Leads to many instances

3 Related Work

DEHEMS [4]

✓ Energy Savings (FP7)
✓ Knowledge Base
 • Various Household Appliances
 • Consumption measurements
 • Energy Classes
 • Reasoning on the above

- Does not model services / sensors
- Could not be found online

ENVISION Ontology

- Event-based Sensor Service System
- Uses
 - W3C’s Semantic Sensor Network ontology
 - SOA4All (WSML, IRIS Reasoner)
- Introduces
 - A Service Ontology (SOS)
 - POSM (Operations, Preconditions, Effects)
4 BOnSAI

- Hardware (Devices)
 - Device Role
 - Sensor, Actuator, (MultiSensor, SensorActuator)
 - Device Communication protocol
 - Wired, Wireless (PLC, ZigBee, Z-Wave, RF etc.)
- Context
 - Location, Environment Parameters, Time
- Functionality of Services
 - Sensor Parameter readings (Environment and more)
 - Actuator Effects (Actions)
4 BOnSAI

• Service
 ▸ Imports OWL-S (top-down)
 ▸ Service (I)nput – (O)output – (P)reconditions – (E)ffects
 • SAWSDL (bottom-up)

• QoS
 ▸ Import from CoDAMoS:Resource
 • E.g. CPU speed, ...
 ▸ Define Communication Protocols
5 BOnSAI Usage

Smart IHU project

- Instantiation on Smart IHU (International Hellenic University) project
 - Smart Building AmI project that targets energy savings, automations and quality of life in a University

- Existing infrastructure
 - Sensors
 - Environmental (Humidity, Temperature, Luminance)
 - Motion detection (Camera, Infrared)
 - Power Consumption (Per Building, Per Appliance)
 - Actuators
 - Plugs (Switch Appliances)
 - IT Equipment management (Wake-On-Lan, Shutdown etc.)

- Devices and functions are exposed by developed Web Services
 - Syntactically described in WSDL
5 BOnSAI Usage (cont’d)
Smart IHU project
5 BOnSAI Usage (cont’d)

Smart IHU project

1. BOnSAI instances (Specific vendor devices)
 - Used as a knowledge base
 - Separate ontology file
 - Adds classes e.g. Smart Plug, Sensor Board
 - Inserts instances for all classes (Communication protocol, Location etc) and for all deployed devices
 - Used as Semantic Description of Services
 - Adding Service properties
 - Operations, Preconditions, Effects
 - OWL-S Grounding, Process Model etc.
5 BOnSAI Usage

Smart IHU project

2. Used for WSDL annotation (SAWSDL lightweight descriptions)
 ▫ `sawsdl:modelReference`

• Usage of lightweight annotations
 ▫ In various applications
 ▫ Currently used in an expert system
 • Knowledge acquisition (e.g. tell conditions from actions)
 • Identify range and source of rule parameters
 • Dynamically adding/removing services
 • Interoperable services
 ▫ In the future will be used for matching, composition, etc.
6 Future Work

• Extensive exploitation of semantic descriptions
 ▫ Semantic Web Service discovery
 • Selection
 • Matching
 • Composition
 ▫ Knowledge Base
 ▫ Expert System
 • Save energy
 • Provide automations
References

